Giant axonal neuropathy: a conditional mutation affecting cytoskeletal organization

نویسندگان

  • M W Klymkowsky
  • D J Plummer
چکیده

Giant axonal neuropathy (GAN) results from autosomal recessive mutations (gan-) that affect cytoskeletal organization; specifically, intermediate filaments (IFs) are found collapsed into massive bundles in a variety of different cell types. We studied the gan- fibroblast lines WG321 and WG139 derived from different GAN patients. Although previous studies implied that the gan- IF phenotype was constitutive, we find that it is conditional. That is, when cells were grown under the permissive condition of medium containing over 2% fetal calf serum, most cells had normal IF organization. IF bundles formed when gan- cells were transferred to the nonpermissive condition of low (0.1%) serum. Microtubule organization appeared normal in the presence or absence of serum. The effect of serum starvation was largely blocked or reversed by the addition of BSA to the culture media. We found no evidence that the gan- phenotype depends upon progress through the cell cycle. We discuss the possible role of serum effects in the etiology of GAN and speculate as to the molecular nature of the gan- defect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abnormal intermediate filament organization alters mitochondrial motility in giant axonal neuropathy fibroblasts

Giant axonal neuropathy (GAN) is a rare disease caused by mutations in the GAN gene, which encodes gigaxonin, an E3 ligase adapter that targets intermediate filament (IF) proteins for degradation in numerous cell types, including neurons and fibroblasts. The cellular hallmark of GAN pathology is the formation of large aggregates and bundles of IFs. In this study, we show that both the distribut...

متن کامل

Gigaxonin Interacts with Tubulin Folding Cofactor B and Controls Its Degradation through the Ubiquitin-Proteasome Pathway

Gigaxonin is mutated in human giant axonal neuropathy (GAN), an autosomal recessive neurodegenerative disorder. The presence of generalized cytoskeletal abnormalities , including few microtubules and accumulated intermediate filaments (IFs), in GAN suggests an essential role of gigaxonin in cytoskeletal organization and dynamics. However, the molecular mechanisms underlying the cytoskeletal pat...

متن کامل

Explaining intermediate filament accumulation in giant axonal neuropathy

Giant axonal neuropathy (GAN)(1) is a rare autosomal recessive neurological disorder caused by mutations in the GAN gene that encodes gigaxonin, a member of the BTB/Kelch family of E3 ligase adaptor proteins.(1) This disease is characterized by the aggregation of Intermediate Filaments (IF)-cytoskeletal elements that play important roles in cell physiology including the regulation of cell shape...

متن کامل

Pili canaliculi as manifestation of giant axonal neuropathy*

Giant axonal neuropathy is a rare autosomal recessive neurodegenerative disease. The condition is characterized by neurons with abnormally large axons due to intracellular filament accumulation. The swollen axons affect both the peripheral and central nervous system. A 6-year old female patient had been referred to a geneticist reporting problems with walking and hypotonia. At the age of 10, sh...

متن کامل

Microtubule-associated protein 1B

Giant axonal neuropathy (GAN), an autosomal recessive disorder caused by mutations in GAN, is characterized cytopathologically by cytoskeletal abnormality. Based on its sequence, gigaxonin contains an NH2-terminal BTB domain followed by six kelch repeats, which are believed to be important for protein-protein interactions (Adams, J., R. Kelso, and L. Cooley. 2000. Trends Cell Biol. 10:17-24.). ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 100  شماره 

صفحات  -

تاریخ انتشار 1985